35. Use the guidelines of curve sketching to sketch the curve.

$$y = \frac{1}{2}x - \sin x$$
, $0 < x < 3\pi$

Domain: Given.

Intercepts: We cannot set x=0 because the domain excludes x.

x-int.: This is difficult to find at this stage. So, we will wait to see if it is needed.

Symmetry: This function would be odd if we could include negative *x* values. But, the domain excludes such values.

Asymptotes: There are no asymptotes at the endpoints because our function would be defined. It would be continuous if we were to go beyond the points 0 and 3π . So, there are no vertical asymptotes. There are no horizontal asymptotes because we cannot let a x go to positive or negative infinity due to the limited domain.

Decreasing/Increasing Intervals:

$$f'(x) = \frac{1}{2} - \cos(x)$$

{ Find points where the function equals zero to find critical points. } $f'(x) = 0 = \frac{1}{2} = \cos(x)$

Find where
$$\cos$$
 is 1/2 between 0 and 3π .

arccos of
$$\frac{1}{2} = \frac{\pi}{3}$$

cos is positive in the first and fourth quadrants.
Note that the interval goes to
$$3\pi$$
.
Cos $x = \frac{1}{2} e^{-\frac{\pi}{3}}, \frac{5\pi}{3}, \frac{7\pi}{3}$

Local Min./Max.:

Loc. min.:

$$\left(\frac{\pi}{3}, f\left(\frac{\pi}{3}\right)\right) = \left(\frac{\pi}{3}, -0.34\right)$$

$$\left(\frac{7\pi}{3}, f\left(7\frac{\pi}{3}\right)\right) = \left(\frac{7\pi}{3}, 2.80\right)$$

Loc. max.:

$$\left(\frac{5\pi}{3}, f\left(\frac{5\pi}{3}\right)\right) = \left(\frac{5\pi}{3}, 3.48\right)$$

Concavity:

$$f''(x) = 0 + \sin(x)$$

$$= \sin(x)$$

$$f''(x) = 0 = \sin(x)$$

$$\arctan(0) = 0$$

$$Sin(x) = 0 @ Ø_3\pi_12\pi$$

$$Not in Domain.$$

Int
$$T_{est}$$
 Signof Concavity $(O_3\pi)$ $f''(2)$ $+$ \cup $(\pi_3 2\pi)$ $f''(4)$ \bigcirc $(2\pi_3 3\pi)$ $f''(7)$ $+$ \cup

Inflection Points:

$$(\pi, f(\pi)) = (\pi, \frac{\pi}{2})$$

 $(2\pi, f(2\pi)) = (2\pi, \pi)$

Graph:

